Scatter and cross-talk correction for one-day acquisition of 123I-BMIPP and 99mtc-tetrofosmin myocardial SPECT.
نویسندگان
چکیده
OBJECTIVE 123I-15-(p-iodophenyl)-3-(R,S)-methylpentadecanoic acid (BMIPP) and 99mTc-tetrofosmin (TET) are widely used for evaluation of myocardial fatty acid metabolism and perfusion, respectively. ECG-gated TET SPECT is also used for evaluation of myocardial wall motion. These tests are often performed on the same day to minimize both the time required and inconvenience to patients and medical staff. However, as 123I and 99mTc have similar emission energies (159 keV and 140 keV, respectively), it is necessary to consider not only scattered photons, but also primary photons of each radionuclide detected in the wrong window (cross-talk). In this study, we developed and evaluated the effectiveness of a new scatter and cross-talk correction imaging protocol. METHODS Fourteen patients with ischemic heart disease or heart failure (8 men and 6 women with a mean age of 69.4 yr, ranging from 45 to 94 yr) were enrolled in this study. In the routine one-day acquisition protocol, BMIPP SPECT was performed in the morning, with TET SPECT performed 4 h later. An additional SPECT was performed just before injection of TET with the energy window for 99mTc. These data correspond to the scatter and cross-talk factor of the next TET SPECT. The correction was performed by subtraction of the scatter and cross-talk factor from TET SPECT. Data are presented as means +/- S.E. Statistical analyses were performed using Wilcoxon's matched-pairs signed-ranks test, and p < 0.05 was considered significant. RESULTS The percentage of scatter and cross-talk relative to the corrected total count was 26.0 +/- 5.3%. EDV and ESV after correction were significantly greater than those before correction (p = 0.019 and 0.016, respectively). After correction, EF was smaller than that before correction, but the difference was not significant. Perfusion scores (17 segments per heart) were significantly lower after as compared with those before correction (p < 0.001). CONCLUSIONS Scatter and cross-talk correction revealed significant differences in EDV, ESV, and perfusion scores. These observations indicate that scatter and cross-talk correction is required for one-day acquisition of 123I-BMIPP and 99mTc-tetrofosmin SPECT.
منابع مشابه
Scatter correction based on an artificial neural network for 99mTc and 123I dual-isotope SPECT in myocardial and brain imaging.
UNLABELLED The aim of this study was to elucidate the clinical usefulness of scatter correction with an artificial neural network (ANN) in 99mTc and 123I dual-isotope SPECT. METHODS Two algorithms for ANN scatter correction were tested: ANN-10 and ANN-3 employing 10 and 3 energy windows for data acquisition, respectively. Three patients underwent myocardial or brain SPECT with one of the foll...
متن کاملDual radioisotopes simultaneous SPECT of 99mTc-tetrofosmin and 123I-BMIPP using a semiconductor detector.
Objective(s): The energy resolution of a cadmium-zinc-telluride (CZT) solid-state semiconductor detector is about 5%, and is superior to the resolution of the conventional Anger type detector which is 10%. Also, the window width of the high-energy part and of the low-energy part of a photo peak window can be changed separately. In this study, we used a semiconductor detector and examined the ef...
متن کاملA patient with type I CD36 deficiency whose myocardium accumulated 123I-BMIPP after 4 years.
A 73-year-old man with aortic regurgitation was examined by 123I-alpha-methyl-p-iodophenylpentadecanoic acid (BMIPP) myocardial single photon emission computed tomography (SPECT) in 1995. Myocardial accumulation was not evident on either the early or the delayed image obtained 15 minutes and 3 hours, respectively, after injecting 123I-BMIPP. Flow cytometric analysis of CD36 expression in monocy...
متن کاملEvaluation of Simultaneous Dual-radioisotope SPECT Imaging Using 18F-fluorodeoxyglucose and 99mTc-tetrofosmin
Objective(s): Use of a positron emission tomography (PET)/single-photonemission computed tomography (SPECT) system facilitates the simultaneousacquisition of images with fluorine-18 fluorodeoxyglucose (18F-FDG) andtechnetium (99mTc)-tetrofosmin. However, 18F has a short half-life, and 511keV Compton-scattered photons are detected in the 99mTc energy window.Therefore, in this study, we aimed to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Annals of nuclear medicine
دوره 18 8 شماره
صفحات -
تاریخ انتشار 2004